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Preface

Many current fighter aircraft utilize thin delta wings with forebody strakes, which

produce strong vortical flows at modc rate to high angles of attack. The resulting lift incre-

ment is highly nonlinear and cannot be accurately predicted by current design methods.

The objective of this thesis is to calculate the flow over a cranked delta wing using the

thin-layer Navier-Stokes equations. Emphasis is placed on determining the effects of the

strake vortex on the wing vortex and the ability of the code to reproduce the secondary

vortex structure.

The algorithm used in this study was the ARC3D code, written by Dr. Thomas

Pulliam of the NASA Ames Research Center. It has been extensively modified by Dr.

Philip Webster of the Flight Dynamics Laboratory. The calculations were done using the

CDC Cyber arid Cray XMP-12 computers at Wright-Patterson AFB, Ohio.

I would like to thank Dr. Joseph Shang, of the Flight Dynamics Laboratory, not

only for his financial support but also his technical and moral support. I would also like to

thank Dr. Philip Webster for his patience and technical expertise on the ARC3D computer

code. I would like to thank Dr. Halim for his support of this effort. Finally I would Iike to

thank my biggest supporter, my wifelM who was always there when I needed her.

This thesis was prepared using a Macintosh Plus computer using Microsoft Word

word processing software and Expressionist equation writing software. It was printed

using an Apple Laserwriter Plus printer.
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For thin, highly swept wings operating at moderate to high angles of attack, the

flow over the wing is dominated by h formation of leading edge vortices. These vortices

produce a minimum pressuread this results in an additional lift increment. This lift in-

crement is nonlinear with angle of attack and cannot be accurately predicted using present

design methods.

Thethin-layer Navier-Stokes equations were used to calculate the flow over a

straight delta wing and a cranked delta wing. The straight delta wing was used as the test

case due to the availability of both experimental and numerical data. Results are compared

with this data in order to validate the numerical procedure. The computer code uses an im-

plicit, time marching algorithm developed by Beam and Warming. The solution is marched

in time until a steady state is achieved. The code is approximately factored and diagonal-

ized in order to reduce computational work. A solid state disk is used in order to allow for

the large grid needed for afthre-dimensionit solution..

The thin-layer Navier-Stokes equations are capable of accurately calculating vortical

flows. The cranked delta wing exhibited flow similar to a straight delta wing upstream of

the crank. The vortex generated at the crank quickly became paired with the vortex from

the front of the wing. Th4vortex location aft of the crank changes with streamwise loca-

tion. The rid resolution is important when trying to calculate vortical flowsk due to the
.4 -,i

large gradients in both ibespanwise and normal directions. The solid state disk can be

used to run pixblems that require more computer memory than is available. Optimization

of the program input/output should be done for running the code with the solid state disk ta-

d~er to reduce the central processor unit time and job cost.

44
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THIN-LAYER NAVIER-STOKES SOLUTIONS FOR A CRANKED DELTA WING

The current class of high performance fighter aircraft must be able to operate over a

wide range of flight conditions. A single point design aircr is no longer acceptable.

They must have efficient supersonic cruise performance and yet be able to maneuver

transonicly for dogfighting. The supersonic requirement has driven aircraft designers to

use thin, highly swept wings. Although these are desirable for cruise performance, they

greatly degrade the maneuverability of the aircraft. This performance degradation is caused

by flow separation at moderate to high angles of attack. This difficulty in maintaining

attached flow, has led designers to explore the possibility of using vortex lift for maneuver

enhancement (1:20).

Current fighters, such as the F-16 and the F-18, utilize vortex lift to enhance their

performance by the use of wing-strake planforms. The strakes generate strong vortices,

which sweep back over the wing and generate a significant increase in lift. This lift

increment is a result of the decrease in pressure on the upper surface. It is highly nonlinear

and cannot be accurately predicted using current linear design methods.

Newsome and Kandil (2:2-3) have classified the flow over a body into four general

categories. The first category is for attached flow which occurs at low angles of attack.

Thc second category, for moderate to high angles of attack, is identified by the formation of

large vortices on the lee-side of delta wings, swept wings, low aspect ratio wings, and

slender bodies. A typical flow pattern is shown in Figure 1. The flow is dominated by the

large primary vortices generated at the wing leading edge. In addition, a secondary vortex

is formed because the spanwise flow is unable to negotiate the adverse pressure gradient.

The vortices in this region are both stable and symmetric and it is for this reason that most

of the research done on vortex flows has been in this region. The third category of flow is



VORTICAL FLOW
ABOVE A DELTA WING

. ..... Prim ary

:**. ... .. Vortex

Secondary Vortex

Figure 1. Vortex Flow Over a Delta Wing (3)
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for very high angles of attack. The flow in this region produces either unstable or

asymmetric vortices. The vortices may burst or become asymmetric, producing large

changes in the body forces and moments. This region can be 'haracterized as a transition

region from steady stable vortex flows to unsteady, asymmetric flows. The majority of the

research in this area is related to predicting vortex breakdown or vortex asymmetry. The

final region is for extreme angles of attack. The flow is characterized by an unsteady

diffuse wake that may produce vortex shedding. This area is not of much interest, since

most flight vehicles are not likely to operate in it.

For sharp delta wings, Stanbrook and Squire (4) have shown that the flow can be

classified according to the normal Mach number (Mn) and the normal angle of attack.(ax),

given by

Mn = M. 1-sin2 Acos 2ct (1)

a, = tan-' tanA (2)

where A is the wing leading edge sweep, a is the angle of attack, and M.0 is the freestream

Mach number. The Stanbrook-Squire boundary classifies leading edge flows into either

separated flows or attached flows depending upon whether the normal Mach number is less

than or greater than one.

Miller and Wood (5) have refined this boundary and identified six possible types of

flow, which are shown in Figure 2. For normal Mach numbers less than one and small

angles of attack, the flow is characterized by a separation bubble at the leading edge. As

angle of attack is increased the flow separates at the leading edge and forms a vortex, which

is often referred to as "classical leading-edge separation" (2:3). Normally a secondary

vortex will form under the the primary vortex. This is due to the spanwise flow being

l,'.
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Figure 2. Possible Types of Vortex Flows Over Sharp Delta Wings (5)
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unable to negotiate the adverse pressure gradient, thus separating from the wing surface.

For normal Mach numbers greater than one, there are three types of flows possible. At low

angles of attack the flow is attached and the leading edge expansion is terminated by a

crossflow shock. With increasing angle of attack the shock strengthens and causes the

formation of a shock induced separation bubble in board on the delta wing. Further

increase in angle of attack causes the strengthing of a thin separation bubble with a

crossflow shock coalesced on top of it. The final category of flow occurs for very high

angles of attack, with either subsonic or supersonic normal Mach numbers. This flow is

characterized by strong leading edge vortices and strong crossflow shocks.

Methods which predict vortical flows can be generally classified into two

categories. The first category models the vortex in an approximate manner and includes

such methods as the Polhamus suction analogy, vortex lattice methods and panel methods.

The second category captures the vortex as a solution to the governing equations and

includes Euler solutions and Navier-Stokes solutions. The suction analogy (1,6) is an

empirical method which can predict forces and moments but is unable to predict pressures

and velocities. Vortex lattice methods (7-8) are able to predict pressure and velocities by

modeling the vortex sheet as discrete line vortices. In panel methods (9-13) the vortex

sheet is more accurately modeled, but prior knowledge of the vortex structure is required

(14:825-826). The Euler solutions (15-19) can reproduce the primary vortex but are unable

to reproduce the secondary structure. Although the Navier-Stokes solutions (20-25)

reproduce all facets of the flow, they have the drawback of being difficult to obtain and

computationally expensive.

Most of the early research done on vortical flows used one of the methods that

approximately modeled the vortex core. As the speed and size of computers increased,

Euler and Navier-Stokes solutions became more feasible. The Euler equations have the

advantage of being simpler to solve than the Navier-Stokes equations. The major

5



disadvantage to using the Euler equations to model vortical flows is, that an inviscid

approach is used to model a predominatlv viscous phenomenon. The Euler equations can

only capture the primary vortex and it is for this reason that the Navier-Stokes equations are

chosen as the governing equations for this investigation.

The objective of this research is to use the Navier-Stokes equations to calculate the

flow over a cranked delta wing. A partial listing of the available experimental data is

contained in References 25-31. The configuration chosen corresponds to that tested by

Henke (31). This configuration was chosen because its sharp leading edges and flat upper

surface, will produce a strong vortex which is free of body influences. The test conditions

are for a freestream Mach number of 2.5 and an angle of attack of 100.

The solution of the full Navier-Stokes equations requires a substantial amount of

computing resources, therefore the following assumptions were made. The first was that

the viscous effects are only significant in a thin layer near the body. The viscous

derivatives normal to the body are large compared to the viscous derivatives along the

body, as long as the flow is attached or only mildly separated. The only viscous

derivatives retained are those normal to the body and the resulting equations are known as

the thin-layer Navier-Stokes equations (32:9). The second assumption was that the flow

was laminar. Although this may seem restrictive, the laminar numerical results of Rizzetta

and Shang (33) and Buter and Rizzetta (34) were in good agreement with experimental

data. The laminar flow assumption appears to be valid for freestream Reynolds numbers

up to about one million.

The computer code used is the ARC3D code written by Dr. Thomas Pulliam of the

NASA Ames Research Center (32). The code is based on the Beam and Warming implicit

approximate factorization algorithm and uses the thin-layer approximation. It has been

modified by Dr. Phil Webster of the Flight Dynamics Laboratory. The most significant

coding change has been the incorporation of boundary conditions that allow for a branch

.... nm mmnnm i llai armi nia li lm I I ]o []b



cut, between the upper and lower body surfaces. This allows for the use of an H-grid

topology which gives better modeling of the sharp leading edge.

This version of the code has never been run on the Cray XMP- 12 computer at

Wright-Patterson AFB. Before the cranked wing calculations could be performed, the code

and hardware needed to be checked. This was done by running a test case for which

experimental and numerical data were available. The test case corresponds to the

configuration tested by Monnerie and Werle (35). Available numerical data includes the

full Navier-Stokes calculations of Rizzetta and Shang (33) and Buter and Rizzetta(34), and 7A

the conical solutions of Thomas and Newsome (36) and Vigneron, Rakich, and Tannehill

(37).

.71



1IMMI

~II AnanyEsGoverning Equations

The time-dependent compressible Navier-Stokes (NS) equations describe the con-

servation of mass, momentum, and energy for a flowing fluid. Ignoring body forces and

external heat addition, the equations can be written in non-dimensional, strong conserva-

tion-law form as

iatQ + x + Z + a + + G (3)

Pu
Q= py (4)

F pu 1 [ pv 1F pw 1
E= puv F= pvv+p G= pvw (5)

puw pvw pww+p
(e+p)u (C+p)v L (e+p)w J

0

'xx

L xx + + W xz- qx

0

,yx

FV = 'r(6)

Utx + v yy + wTyz -qy

m :&



0

TzX

G V=  Tzy

,rzz

tL uzx + V' y + Wr., - qz

where

TXX = X.(Ux + Vy + Wz) + 21gux

yy = X.(u, + v. + w) + 2gtVy

'rz. = X.(u, + vy + wz) + 2gwz.
TXy =TY 9 =1(Uy + vO (7)

TXz = TzX = (uz + WO)

Tyz = CZ gz =;(Vz + Wy)

ax x Pr Dx -RPr ax

} ~qy=_k _ = T Cp R = ' (8)-

a-= Pr c'kJ z

The equation of state is used to close the system of equations. For a perfect gas, it can be J

expressed in terms of the internal energy and the density as

P -(Y- 1 ')Pei (10) : :

9 _!
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The molecular viscosity (g.) is related to the temperature through Sutherland's formula and

has the units of kg/(m.s)

g 1.458(10)-6 T "' 11

T+ 110.4

The preceding equations have been nondimensionalized using the following relations

x =M" yX1 Z" Zj
L L L

u v= w=W "_. (12)a. a_. a-.

-P " e €  t *-
p.a. (t/a.)

p P =___

P. __ Re =PSp-. p..

where the dimensional variables are denoted by an asterisk, freestream conditions by cc,

and L is the body reference length. Stokes's hypothesis is used to relate . to p. with .

equal to -2/3 g (38:160-161).

Coordinate Transformation

In order to make the governing equations applicable for arbitrary geometries, they

are transformed into generalized coordinates ({,rl,;,r) by means of the following transfor-

mation

T =-t

= 4(x,y,z,t)

I = Iq(x,y,z,t) (13)

= (x,y,z,t)

/0



Pulliam (38:160-161) has shown that the transformed equations written in strong conser-

vation-law form and in terms of the contravariant velocities (U,V,W) are given by

ajQ at + +,D G 42"+ aF",+ aG V(14)

p

Q=-Ip (15)

PU 1pV PW

puU + 4p PuV +i TJPpuW + 1;.p

E=J- pvU + 4yp F=. J pvV + Ilp J-1  pvw + iYp (16)

pwU + 4zP pwV + TlzP pwW + z

(e+ p)U + 4tp I (e+p)V + it (e+p)W + p

4XX + 4%+ ZX

E= J'1 4X- + ty + ,ZTYZ

4x'xzx + 4yTzy + zTZZ

WX + Vy+ UI3

0

71X'rXX + Tly'rxy + ThzTX

llx'rzx + 11yCZY + 1ZT7.Z

LTiI3x + TY + T~~



0

VrXTXX + yTxy + zTxz

- + yty + zTy

L xx + +yOy + ztz

Px = yV Pr-' ale, + UirXX + v'Cxy + WTxz

Oy = -(gPr- I ayei + UTyx + VTyy + WTy z  (18)

= ygPr- ' azei + Uozx + VTzy + WTzU

U =, + 4,u + 4yV + Ew

V =Tt + 71xu + T1yV + TIzw (19)

W = Ct + Cxu + yV + Czw

The details of the transformation to generalized coordinates is contained in Appendix A.

Thin-Laer A rimation

The thin-layer approximation applied to the NS equations consists of neglecting the

viscous derivatives parallel to the body and retaining the derivatives normal to the body.

This is reasonable for high Reynolds number flows, as long as the flow is attached or only

mildly separated (38:160). The approximation assumes that the body is mapped on to a

;=constant plane, and the viscous derivatives in the 4 and ri directions are neglected. AU the

convective terms are retained along with the unsteady terms. Applying the thin-layer

approximation to Equations 14-17, Pulliam and Steger have shown that the equations can

be written as

D Q + DE + DnF + D;G =RTeI DO g(20)

12



where Q, E, F, and G are the same as before. The viscous flux terms parallel to the body

are neglected (E, = dF =0) and the viscous flux term normal to the body is given by

0

pgmiu; + (g./3)m2 x

S= J-1 gmjv + (g/3)m2 y (21)

.mlw; + (g/3)m2 z

.Lml m3 + (g/3) m2m4

2 2 2
M, =Q~+ + z

m2 = U + Yv +

m3 =- ;(u2 + v2 + w2)+ yPrl-a(ei) (22)

M4 = i + CY +1;,

The thin-layer Navier-Stokes (TLNS) equations are a mixed set of hyperbolic-

parabolic partial differential equations (PDE) in time. These have the same form as the NS

equations, and can be solved using the same type of methods. If the unsteady terms are

dropped, the equations become a mixed set of hyperbolic-elliptic equations. These equa-

tions are more difficult to solve and therefore most solutions for the compressible NS

equations have used the unsteady form. The steady-state solution is obtained by marching

the solution in time until converged, and is known as the time-dependent approach. The

time-dependent approach can be explicit or implicit and is usually second-order accurate in

space. If time accuracy is desired, the algorithm should be second-order accurate in time.

For steady-state calculations, a first-order accurate algorithm can be used to accelerate con-

vergence (39:424,482).

/,3--



Boundary Conditions

The pressure at the body surface can be found using a normal pressure momentum

relation. Pulliam has shown (38:161) by combining the three transformed momentum

equations, the normal pressure is given by

Pnd+ d+ Z)= k t+ ua"+ a'+ wa.' ') -

pU(xut + v + zwk)-pV(x + + yv.n + Czw) (23)

and the Cartesian velocities can be determined from

-U (Tiy~z -Tizcy) 44ycz-4zOy)( yiiz -4zTi y) U t

=j-I 4ixz-Tizx) kx -. 4xTz- -ix) V-Tt (24)
LU I (nAY- 'ib) 44(y - 4ycx) (kxnh - 4yT1.) ii. -

The above expressions are valid for inviscid or viscous flows and for steady or unsteady

body motion.

The no slip boundary condition is specified at the body surface, where U=V=W--o

and u,v, and w are determined from Equation 24. In the case of a stationary grid where

t--Tlt=t--', u,v, and w are zero. The surface pressure is calculated by integrating

Equation 23. For viscous flow over a stationary grid, Equation 23 reduces to the pressure

gradient normal to the surface being zero (Pn=O). The body is assumed to be adiabatic

(Tn=O) and the density is found by linear extrapolation from the point above. The farfield

boundary conditions are specified to be freestreaxn values, except for the downstream

condition. A first-order extrapolation was used as the downstream boundary condition. A

plane of symmetry was imposed at the centerline.of the body, where

jq



ap _ pu _apwae v=O at 11 0 (25)

Explicit boundary conditions are used for their ease in application.

Is
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III Numerical Proedure

The numerical procedure used to obtain solutions of the governing equations is out-

lined. Topics include the choice of algorithm, and formulation of the finite-difference equa-

tions. Emphasis is placed on detailing the simplifications used (approximate factorization

and diagonalization) and their impact on code efficiency and accuracy. The implementation

of the nonlinear dissipation model is discussed. The solution process for one time step is

outlined for running the code, in core or out of core with the Solid-State Disk (SSD).

Implicit Time Marching Algorithm

A time marching finite-difference scheme, developed by Beam and Warming

(40:118-120), is used to solve the thin-layer Navier-Stokes equations. This is an alter-

nating-direction implicit (ADI) scheme and is similar to schemes developed by Lindemuth

and Killeen (41) and McDonald and Briley (42). The scheme uses an implicit, three-point,

time-differencing formula in the form

AQ = -!(AQ)+1 Q +-±-(AQ - )( t)'+(At)'](26)

the parameter 15 and (p can be chosen to produce a scheme which is either first- or second-

order accurate in time. Since we are primarily interested in steady-state solutions, a first-

order scheme is chosen. If 15=1 and (p=0, this results in the Euler implicit scheme (39:490)

AQ n = t --AQ") + At -(_ n + O[(At)2] (27)

and AQnQ l , thus Equation 27 can be rewritten as

A t n1)=0 (28)

Q b



Writing Equation 20 at the n+ I time level yields

alQ n =-a4E n -a,,F n - aG n+..-_aS n (29)Re

Finally, substitution of Equation 29 into Equation 28 yields

+ ;R 1=0 (30)

Linearization

For Equation 30 to be solved for Q the flux vectors, E, F, G, and S, which are

nonlinear functions of Q, must be linearized. The inviscid flux vectors can be linearized in

time by using a Taylor series about Q (32:12):

E = E+ - Q =E +A AQ

F 1 = F +-W-AQ =F + B AQ (31)

-n

Steger has shown (43:3-4) that the viscous flux vector can be linearized using a Taylor

series and is given by

S S5 +J-1 -JAQ =S J M J Q (2

17 _



The flux Jacobians are given in Appendix B. Substituting Equations 31 and 32 into

Equation 30 yields the "delta form" of the algorithm

[i +At~A + AtaB n + AtaCn -Re I Ata J-MJ ]jAQn  =

-At(a,- n + a. n + ap ~ _ Re-' I a- )  (33)

In Equation 33 that the left-hand-side contains the unknown AQ and is sometimes

referred to as the "implicit" part. The right-hand-side contains the known quantities and is

referred to as the "explicit" part (32:13). Applying second-order, central-difference oper-

ators to equation 33 yields the final form of the time marching algorithm:

[i +At6 A, + At.Bn + Ata n -nRe-1At8J - M nJ] AQ =

-At(8E E G+ +8-Re; 1 8gS) (34)

Apmroximate Factorization

To integrate the full three-dimensional operator would be prohibitively expensive.

One simplification that can be used is to approximately factor the three-dimensional oper-

ator into three one-dimensional operators. If terms on the O(At2) are neglected the left-

hand-side of Equation 34 is factored into (32:79)

[I + At A"] [I + AtSB n] [i + At8gC n - Re-IAt;J- MJ]AQn (35)

Neglecting the O(At 2) terms will not degrade the accuracy of the scheme since it is first

order accurate in time. Equation 34 can now be written using approximate factorization as

[I + AtS ][I +At5 n] [I +AtC - Re-IAtS j- jAQn =

/8



t(,,-n + Sj n + 8;G n - Re-' 8;~f) (36)

The approximate factorization reduces the (JmaxKmaxLmax5) x (Jmax.KmaxLmax5)

banded matrix down to a set of three block tridiagonal matrices. The size of any matrix is

now at most (max I Jmax,Kmax,Lmax 15) x (max I Jmax,Kmax,Lmax 1[5). The solution

now consists of three sweeps, one in the direction, one in the Tj direction, and one in the

direction. Each block tridiagonal matrix can be solved using a block lower-upper decom-

position (LUD) (32:17).

Diagonalization

Approximate factorization was used to reduce the block three dimensional implicit

operator of Equation 34 down to three one-dimensional block tridiagonal matrices. The

solution of these matrices are still computationally complex, since they involve the solution

of 5x5 blocks. One way to decrease the work is to decouple the equations. If the operators

are diagonalized, the block structure is decomposed into five scalar operators.

Diagonalization of the Euler equations is presented and then the method is extended

to the Navier-Stokes equations. This is due to the fact that" the viscous flux Jacobian Mn

is not simultaneously diagonalizable with the flux Jacobian Cn (32:19)." Warming, Beam.

and Hyett (44:1037-1041) have shown that the inviscid flux Jacobians can be diagonalized

since they have real eigenvalues and a complete set of eigenvectors. The flux Jacobians are

written in terms of their eigenvalues and eigenvectors as

n -1 )nl

B =(T, A TTI (37)
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where T is the eigenvector matrix of A and likewise, Tn for B, and T for C. The eigen-

vector and eigenvalue matrices are written out in Appendix C. Equation 36 can now be

written neglecting the viscous flux Jacobian as

[kTjT- r + A 6#TT 1 r [(TnT-')f + At6~n(TAtT 1

x T4Tj ' + AtT 4 T;A rAQz n an (38)

where

= -At(S ." F + F G- Re -15 ) (39)

The eigenvector matrices are factored outside of the difference operators and this yields the

"diagonal" form of the algorithm.

111I + A t8An] [I + At&A ]n[I + A tA;](T' r AQ~ nRn (40)

where

= (T-TI'Tr)n (41)

Since the eigenvector matrices are functions of 4,T1, and C, factoring them outside

of the operator introduces an error. Pulliam and Chaussee (45:356-359) have shown that

for steady-state solutions, the accuracy of the solution is not affected. The reason being,

for steady-state solutions AQ approaches zero. Since the right-hand-side is unchanged by
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the diagonalization the error is determined by the order of the differencing chosen. They

have also shown the time accuracy of the algorithm to be at most first-order.

The above discussion only applies to the Euler equations since the viscous flux

Jacobian has been neglected. To extend diagonalization to the Navier-Stokes equations,

Pulliam suggests (32:20) including a diagonal term on the implicit side to approximate the

viscous Jacobian eigenvalues. The current estimates are

=~~ p e11( + +2

Xv(TI) = pgtRe- 1(12 + 112 + Iz (42)X = pge -1 X+ 2 +
2 2

For the thin-layer approximation the 4 and 11 terms are ignored and the X,() term is added

to the Ax eigenvalues.

Artificial Dissipation

By the use of linear stability analysis, it can be shown that the diagonalized algo-

rithm, Equation 40, is unconditionally stable. In reality this is not true, especially when the

system is nonlinear. "Scales of motion appear which cannot be resolved by the numerics

and are due to the nonlinear interactions in the convection terms of the momentum

equations (32:26)."

One way of dealing with these numerical instabilities is to add some numerical

dissipation to the algorithm which does not alter the accuracy of the solution. The dis-

sipation model chosen is a mixed second order, fourth order model due to Jameson (46).
tp

The nonlinear model for the C coordinate is given by

D= V;(a1,kl+lJ 1 +1 + a --3  E (2) A - / (43)

k 2 j,k
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where

=j,k ( 2 At max(Tj.k.+l,'fTjk.l,T j.k.1-1)

Tjk1 Pjjk.l+1 - 2Pj,k. + Pj,k.1-11 (44)
Pj,k,l+l + 2Pjk.1 + Pj,kj-(4

()= max(. KC4A t-E (2)--~ I - j,k 1)

j 2= + +2 + )1I2

and a is the spectral radius scaling for C. V; and k are the first order accurate backward

and forward difference operators. Typical values of the constants C2 and 1C4 are .25 and

.01, respectively. Similar terms are used for the 4 and il directions. Applying this model

to both the implicit and explicit sides of Equation 40 yields

T + At8,An- AtDI]Nn[I + At8A, - AtD.l]Pn[I +A A tD;I](T e AQn- -

-At( n +nP + G -e-'8gn-(D 4+D + Q (45)

Since the dissipation is a fourth order model, this necessitates the use of scalar penta-

diagonal solvers. Although pentadiagonal equations are more complicated to solve than

tridiagonal equations, the use of implicit dissipation improves convergence and "robust-

ness" of the algorithm (47:16).

• Solution Procdure i

Since the algorithm makes use of approximate factorization, the solution can be

obtained by sweeping in the 4,r1, and directions sequentially. The solution process
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becomes a series of matrix-vector multiplies and solutions of scalar pentadiagonal equa-

tions.This process consists of the following eight steps at each time level.

1. A matrix-vector multiplication at each grid point.

S1= (T R[-)" (Dt + D + D )Qo]

2. The solution of five scalar pentadiagonal equations for the direction.

S2 = [I +AtkAt - AtD4I]_1 i

3. A second matrix-vector multiplication at each grid point.

4. The solution of five pentadiagonal equations,this time in the rl direction.

S4I = [I + AIAn, - A tDI]-' §3 -

5. A third matrix-vector multiplication at each grid point.

6. The solution of five scalar pentadiagonal equations, in the direction.

S6 = [I + At86A; - AtD;I]1 S5

7. The final matrix-vector multiplication at each grid point.

AQi = (T,)fl S6

8. The solution is then updated by

n+1 oSn + AinQ =Q+AQ
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Solid State Disk Implementation

The calculations were done on a Cray XMP-12 computer using a Solid State Disk

(SSD). The SSD was used because of the large grid and large amounts of storage required

for the solution of a three dimensional problem.

The solution process using the SSD, entails two sweeps of the domain for each

time step. The first sweep is for planes of constant Tj (k planes), where the differencing in

the direction is done. The second sweep is for planes of constant (1 planes), where the

and Ti differencing is done.

The SSD is set up with two working files. The first file contains the metrics and

the second file contains the flow variables. At each plane the metrics and the flow variables

are read into the in-core memory. The calculations are carried out and the updated flow

variables are loaded back on to the SSD. There is no need to unload the metrics since they

are invarient with time. The algorithm advances to the next plane and the process is

repeated.

Using the SSD is one way of running problems which require more core memory

than may be available. The trade off is that the code is not as efficient as a code that runs

totally in core. Appendix D contains a comparison of Central Processor Unit (CPU) times,

input/output (I/O), and storage required to run the code in core and out of core using the

SSD.
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IV Results and Discussion

The diagonalized algorithm is used to calculate the flow over a 750 delta wing and a

801/690 cranked delta wing at angle of attack. The delta wing calculations are compared

with the experimental data of Monnerie and Werle (35) and the numerical results of Buter

and Rizzetta (34). The cranked wing solution is compared with experimental data of Henke

(31). The calculations were done on the Cray XMP-12 computer at Wright-Patterson Air

Force Base (AFB), Ohio. The information and files required to run this code at the Air

Force Institute of Technology, are contained in Appendix E.

DetaWing

Since this version of the code had not been previously run using the Cray at

Wright-Patterson AFB, it was necessary to insure there were no hardware or system

software incompatibilities. A 75* delta wing at a freestream Mach number of 1.95 and

angle of attack of 10* was chosen as the test case. This configuration was tested by

Monnerie and Werle (35) and the model geometry is given in Figure 3. Numerical

solutions using the full Navier-Stokes equations and the conical approximation to the

Navier-Stokes equations are contained in references 31-34. Comparisons will be made

with the experimental data and with the numerical results of Buter and Rizzetta (34).

Due to the simple geometry of the delta wing, the grid was generated using an

algebraic grid generator. The grid consisted of 30 points in the streamwise (4) direction,

55 points in the spanwise (ij) direction and 65 points in the normal () direction. A typical

streamwise grid plane (ij, ) is shown in Figure 4. The grid incorporates a branch cut

between the upper and lower body surfaces to allow for the use of an H-grid. This

approach was used to eliminate the small radius of curvature of the grid, at the wingtip, that

results from using a C grid. Since the freestream Mach number is supersonic, the upstream

propagation of disturbances is extremely limited. This implies that there is no requirement
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for a wake region and the domain ends at the wing trailing edge. Orthogonality is not

enforced at the boundaries, but previous work (33,34) has shown that good results can be ,--

obtained using this approach. Points were clustered in the high gradient areas such as, the

nose, the wingtip and at the body surface, by the use of exponential functions.

Figure 5 shows the comparison of Pitot pressures with the experimental data.The

Pitot pressures have been normalized by the freestream Pitot pressure. The thin-layer

Navier-Stokes calculations show good agreement on the location and the strength of the

primary vortex. The comparison with the work of Buter and Rizzetta are shown in Figure

6. Again good agreement is seen with the full Navier-Stokes calculations. As was seen in

the previous comparison, the thin-layer calculations exhibit more total pressure loss, but the

crossplane velocities and the wing surface pressures agree well. The present study exhibits

a little less development in the secondary separation region than do the full Navier-Stokes

solutions as seen in the surface pressure plot.

The streamwise development of the leading edge vortex is given in Figure 7.

Traveling from the nose to the trailing edge, the vortex is seen to strengthen. This is

marked by a decrease in pressure of the primary vortex core and an increase in the

crossplane velocities. Also from the crossplane velocities, the formation and strengthening

of the secondary separation is seen, although this is not significant until aft of 60 percent of

the wing length. Upon closer examination of the crossplane velocities, it is noted that the

center of the vortex and gross features of the flow do not change rapidly in the streamwise

direction. Although the flow is not truly conical, it is changing slowly enough that

ignoring the viscous effect will not significantly affect the overall flow field structure. The

same trend can be seen in the surface pressure plots of Figure 8. The primary vortex is

seen to increase in strength with aft movement.
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Crnked Delta Wing

The configuration chosen for this study was that tested by Henke (31) and is shown

in Figure 9. It has an 80" leading edge sweep forward of the crank and is followed by a

69" sweep. The crank occurs at 40 percent of the body length. The wing has a triangular

cross section with a flat upper surface and sharp leading edges. The angle between the

upper and lower surfaces is 400 and this results in a relatively thick body at the trailing

edge.

An algebraic grid generator was also used to fit a grid around the cranked delta

wing. The grid generator was originally written to generate grids for delta wings and has

been modified by the author to generate grids for cranked delta wings. Appendix F

contains the listing of the grid generator used for these calculations. The grid consists of

127,400 points, 28 in the streanwise direction, 65 in the spanwise direction, and 70

normal to the body. A typical streamnwise grid plane is shown in Figure 10. As can be

seen from the figure, points have been clustered at the body surface and the wing tip. The

grid consists of 41 points on the wing surface in the spanwise direction and 25 points in the

streamwise direction. In addition to clustering at the nose, points were clustered in the

vicinity of the wing crank. This was necessary because of the large changes in the flow,

resulting from the start up of the crank vortex. As before a branch cut is used to allow for

an H grid topology. Since the freestream Mach number is supersonic, there is no signif-

icant signal propagation from the wake region, therefore the domain ends at the wing

wrailing edge.

The first plane of the grid on the body is located at x/l=0.05 from the apex of the

delta wing. It was found that placing a plane of data farther forward than this caused the

program to crash. It is thought that the points become compressed in the 11- plane and this

causes large unsmooth variations in the metrics. The correction to this problem was to

move the initial plane rearward and open up the iq- plane.
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The configuration chosen was for a freestream Mach number of 2.5 and an angle of

attack of 10 degrees. This angle of attack was chosen because it was thought to be high

enough to develop stable vortical flow. The freestream Reynolds number is 686,000 and

the wind tunnel stagnation conditions are 10 psia and 200 C.

Figure 11 shows the development of the Pitot pressures and cross plane velocities

along the wing. The flow over the wing in front of the crank is similar to that found on

straight delta wings. From the crossplane velocity plot, for a streamwise location of

x/1=0.398, it is seen that the center of the primary vortex is located at approximately 50

percent of the wing span. The location of the vortex center remains fairly constant with

streamwise location. This was also true for the flow over the 750 delta wing that was

shown previously. In addition to the primary vortex structure, there was also a secondary

structure located at about 85 percent of the wing span.

Moving aft of the crank, a second vortex forms at the wing crank. This second

vortex can be seen in the plots of Figure 11, at a wing location of x/L=0.414. The vortex

center is located at approximately 85 percent of the wing span. The area of secondary sep-

aration seen in front of the crank, has started to diminish. Moving aft on the wing

(x/L--0.453) shows no evidence of the second vortex. The vortex generated at the crank

appears to become paired with the first vortex and the secondary vortex has now com-

pletely disappeared as a seperate identity. Finally, looking at a plane well aft of the crank,

xtL--0.88, an area of low Pitot pressure has formed between the first vortex and the wing

leading edge.

The vortex location is seen not to change with streamwise location in front of the

crank but this is not true aft of the crank. Figure 12 shows a comparison between the flow

in front of the crank and well downstream of the crank. Aft of the crank the vortex center

is seen to move inboard and towards the wing surface. The area of secondary separation

present in the flow in front of the crank has been replaced by an area of low Pitot pressure.
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The surface pressures show that the overall magnitude of the pressure is approximately the

same for both planes. The primary difference is that the flow over the cranked portion

must negotiate a larger pressure gradient than the flow in front of the crank.

Figure 13 shows a comparison of the upper surface pressures with experimental

data. The upper surface pressure exhibits the same trend as the experimental data but is

about 10 percent less for the outboard wing section. It appears that the grid may be too

coarse in the spanwise and normal directions to adequately resolve all the details of the flow

field,
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V Conclusions and RecommendAtions

The Thin-layer Navier-Stokes equations were shown to be capable of reproducing

both the primary and secondary structures of vortical flows. For flow over a straight delta

wing, good agreement was obtained with the full Navier-Stokes solutions of Buter and

Rizzetta. The present study did exhibit slightly more Pitot pressure loss than either the

experimental data or the full Navier-Stokes solutions.

The cranked delta wing exhibited flow similar to a straight delta wing for locations

upstream of the crank. Vortex location did not vary greatly with streamwise location. A

second vortex formed at the crank and then quickly became paired with the first vortex.

Moving downstream the vortex center moves inboard and towards the wing surface. The

secondary separation present upstream of the crank has been replaced by an area of low

Pitot pressure. The magnitude of the wing surface pressures are approximately the same

for the flow fore and aft of the crank. The major difference is the flow downstream of the

crank must negotiate a larger pressure gradient than the flow upstream of the crank.

Grid resolution appears to be critical when trying to calculate vortical flows. It is

necessary to cluster points not only normal to the body but also in the spanwise direction

near the leading edge. This is required in order to accurately resolve the large gradients in

the il direction. The result of insufficient numerical resolution is degraded definition of the

secondary vortical structure or even a failure to resolve the primary structure. For a delta

wing the grid can be fairly coarse in the streamwise direction as long as the vortices are

stable. If the flow becomes unsteady, such as with vortex bursting, then the resolution in

the streamwise direction should be fairly fine. The above is only true when there is little or

no trailing edge effects propagating upstream. The cranked delta wing will require a fine

grid in the strearmwise direction due to the flow changing downstream of the crank.

The use of the Solid State Disk (SSD) allows for the use of grids that require more

computer memory than is available. The accuracy of the solution is not affected when
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using the SSD. The main drawback to using the SSD with the ARC3D code seems to be

the amount of input/output required. If the input/output can be better optimized this would

reduce the required central processor unit time and also reduce the job cost.
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Apendix A: Coordinate Transformation of the Governing Equations

The governing equations can be transformed from Cartesian coordinates (x,y,z,t)

into generalized coordinates , by the following transformation

T =-t

= 4(x,y,z,t)

-I = (x,y,z,t) (A1)

Using the chain rule, the Cartesian partial differentials can be written in terms of the

transformed coordinates

at atr at a a ta at ac

ax ax ka a4 ax On ax a

a =ka + a4 a+afta +D a = y + y + ya (A2)
ay a ay a4 ay an ay ac

az az k az a aza' aza

Applying Equation A2 to Equation 3 yields

a.Q + a,(Q + xE + 4yF + 4,G) + Dn(TtQ + "qxE + TyF + "izG) +

a;(CQ + .E+ yF+ tG) = Re-I[a(4xE, + 4Yv+ 4 v)+

anlxE, + "qyFv + njzGv) + a;(C.E,, + yF, + zG,] (A3)



the metrics appearing in the above equation are defined as

4x= J (z,1x% - zn

,1x = J (z~y; - y~z;)

fly = J (xVz; - X;Zj)

l= J~ (x; - t;(M

=y J (x Z4, - ry

it -XT~x - YATY - ZrT-z

CE- X,,x - Y'lc - Z42

where J is the Jacobian of the transformation and is given by

J = 1/J1l (AS)

- (X,Y,z,t) X,, X4 X11 X; A6

Zi: Z Zq Z;

J - x4yTqZ + x~y~z~l + X'ly;z4 - xVy;z- x,1ykz; - x;ynz4 (A7)



If the transformation is a result of grid generation then the metrics and the Jacobian can be

computed numerically using central differences.

Vinokur (48) showed that the governing equations can be transformed into strong

conservation law form, by first dividing Equation A3 by the Jacobian and then using the

chain rule to bring the Jacobian inside the differential operators. Equation A3 becomes

Q)+ _L4Q+ 4,E; + y + 4,G) a (TitQ + riSE + T1yF + TzG)

( tQ + xE + QF + QG )[L +[~ + ( ) (i] + + x'

F + (aJ)+ + -Y J/I - G +JI + 'F +IMJ ] k J L J 1 1 - ) -Ret- - '--+.

+ %lEv + 11F,+ ilzGv) + i(xEv + yF, + + ()
Ch ac \ jJ(TJ +

+ FV[(-) - ) + + v[('z),+ rj z )' + (-z)]} (A8)

the last four terms on the left hand side and the last three terms of the right hand side are

known as the invarients of the transformation. It can be shown, by using the definition of

the metrics, that these terms are zero (32:6).

The contravarient velocities U, V, and W are defined to be the velocities in

directions normal to planes of constant 4, rl, and respectively and are given by

U 4, + 4xu + yv + 4w

V = it + rlxu + rlyV + rlzw (A9)

W = + ixU + yV + w
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Applying these definitions to Equation A8, Pullian (38:159-160) showed that the governing

equations written in strong conservation-law form and generalized coordinates are given by

D, +& +DF G=-LaE,+a,,+ (AlO)

-' Pu

Q=J'I pv (All1)

Pw]

PU PV F pW

puU + xP puV + r~xp puW + xP

E=J- PvU+ 4y J1 pV + 7lyp G J_ pvW + p I(A 12)

pwU + Zp pwV + 1lZp LpwW + ,
(e+p)U + 4t (e+p)V + 71tp _(e+p)W + t

0

4XTxx + 4%~x + ztxz
E=J1 XY + 4ytyy + ZTYZ

4XZ + T + ZZ

Uxx + 4yPy + UZ

0

TIXTXX + flYTXY + 7fl x A 3

flx*Tzx + fly'TZY + Tlztzz

rTOI3 + TIN+ iTOZ
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- TX + oYX CZX

GV -1 .,'yx+ r + ZY

CT + CZY+ C T~

P= yg±Pr-I ae + utx + VTy+ Wx

p= fgtPr- Qyei + u~.+ vT + WZ(A 14)

N= ypPC1 Dze + uz + VTzy + WT,,

and the cartesian derivatives become

U= X+ 1lxUin + xU;

Uy = 4yU4 + l1yUrn + cyU

uz = zuk + rIzui.n + zu;

Vx= Xvt + llxvi1 + Xv

Vy = 4YV4 + ~v 1 + yV (A 15)

Vz = 4zvt + 1ZVT1 + v

.x = + TlxWT1 + XW

WY = yW4 + Tly w T +

wz = zWt + 11ZWTI + zW



Appendix B: Flux Jacobian Matrices

Pulliam has shown ( 32:99- 100) that the invisicid flux Jacobians, A, B, and C, are

obtained by time linearizations of the inviscid flux vectors, E, F, and G, and are given by

Xocyo ]0 ) )

2

Ay -v6o TOJ xv - fly- lOu
aQz - 2  WO, Xw - zY - )u

4fy 4lZ 0

4yu -Wy -Ov u - '(Y-Ow(y - 1)

4t + 0. - y(y - 2)v flZv - Y(Y - 1) w 4Y(Y- 1) (B21)

4wlj- 4(Y - 1) v 4tlV +,-(y- )w0 +y y0)

4YW- Y-00 4W (Y- WOI t590



[ - ,v
e=Xo 2 _ U93 t + 03- xY 2)u-q

__c. = Y %2 _ V03 C v - CY{ ,- O~u

CZ0 2 - w03 xw - L(Y- Olu

-0 3 (e/p - 202) ;x'-(Y- 1)O3

;Yu - Wxy- tOV C u - W;Y( - O~w CAY'- 1) ( 3
Ct + 03 -y(-2)v Zv - Oyy-lw Cy(y - 1) (3

yW - OzY-lv t + 03 -z(-2)w z(Y - 1) _I

Cy - (Y I)V03 zW- (Y- )w0 3  Ct + Y03

where

02 =(Y- 1)( U2 + v 2 + w2) (B4)2

W= yelp - 02 (B5)

01 = 4xU + 4yV + zW

02 = xU + fyV + TlZw (B6)

03 + Yu + y+w

The viscous flux Jacobian (M) is obtained from the linearization of the viscous flux

vector (S). Using a Taylor series, Steger has shown the Jacobian is given by (43:3-4)

bO



0 0 0 0 0

in21  ais(Vl) a2S(P-I) a36dP-') 0

in 31  a 2SC(P' ) CC464( )asJ' (B7)

Mn41  a38;(P-') C564(P ) xC6 6dp1 ) 0

in51  M52 Mn53 Mn54  aok(p1v

in21 = al8(-U/P) + aL264-V/P) + aX3 6(-W/P)

in31 = OL26 4 -U/P) + cL44(-V/P) + ccs6 (-W/P)

Mn41 = CL35(-U/P) + a58d-V/P) + aC66(-WfP)

in51 =tb-2p + OC26;(-2uv/p) + a365(-2uw/p) + ct4S (-~V2/P) +

OC68 4 (-w2/p) + ao54-e/p2) + ao,5cf2 + V2 + W2yp] (B8)

M752 = -M21 - aXO8bu/p)

M53 = -Mn31 - czO6~(v/p)

m54 = -mi- czo8~w/p)

a2= (p/3)C, y

a6 [ + g+ /)2

bX i x(/3y z
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Appendix C: Flux Jacobian Eigenvalue and Eigenvector Matrices

Warming, Beam, and Hyett (44:1037-1041) have shown that the invisicid flux

Jacobians can be diagonalized since they have real eigenvalues and a complete set of

eigenvectors. The flux Jacobians are written in terms of their eigenvalues and eigenvectors

as

A = (TtATl)n (Cl)

where T4 is the eigenvector matrix of A and likewise Tn for B and T; for C. The

eigenvalue matrices are given by

U 0 0 0 0
0 U 0 0 0

A4 0 0 U 0 0
0 0 0 U+aKI 0

0 0 0 0 U-aK1 j

V 0 0 0 0 ]
0 V 0 0 0

A = 0 0 V 0 0 (C2)
0 0 0 V+aK2  0

0 0 0 0 V-aK2j

W 0 0 0 0
0 W 0 0 0
0 0 W 0 0
0 0 0 W+aic3 0a]

L 0 0 0 0 W- a 3J

where a is a characteristic speed and

Ki(2 + 42+ 42)112
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12 2 2 2)1/2

K3 2x+ 2+ (21/

The eigenvector matrices are

4xU 4YU-4zP

T4 ~xV+4zP v

XW -4yp 
4yW+4xP Zl1+ p(-4z.V--qW)] [ Yco2/(Y 1) + p(xW-z)

4zU+4yP aC(U-,a) a(u-- Xa)

zv-xP aL(v+iya) ccv-. ya)

[ WA2iY 1) + p(yU--4V)] (02 + a2)/(Y_ 1) + 6a] a[(02 + a2)/(y- 1) e aJ

ix fly

L [ '47 1)+ Pf~zv-7iyw)J [y'(-I (--,~

a aa

lzVllxP a(v+iya) a(v-iiya) (C4)

iZw a (w --uza) a(w- za)
1) + p iV)] a(02 + a') /(y- 1) + 02a] at[(O2+ a2)/(y- 1)- 02a] -
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CxV+CzP yv

[~2~1 ( y) [Yo2/(Y- 1) + p(xWzU~

za -a
zu+ yP a~u+ ,xa) ac(u- xa)

zv- xP cc (V-i Ya) a(v- ya)

zwa(w +za) cw-- Za)
+ p 2(Yyx~ I)~ + a(Y_2) /(y-1 + 3 a] j( 0 2 + a2) /(y -.

F ~ ~ [ +a 322 -a]VyW/ xTh ua

_02 /a2) -W p 2L ~ (z2 4 -f3(y- I )u-/a

1y (I/a -0ty-2 1 ()x pW/a 2 + 4.Ip ,(-V

Th' 1Z ~ )v/a2+) -x/ (4u-(~y- I )/a 2  ~ y I Va2

1(02v-0aa 41[y- 1 )u-4a3(-)

p(0 + v +0 la)] 4y- 1 )u + 4xa (-1

y- I 2Vaa) y- I zW/a2 + 4,/p(-- I-)I aa

ijj *-I)-(xW1zU4'P r Ay- I)wa2 +-Ay/Ipa

= iiz(, _2/a2) _ jy-IiV_ Wp ij 1)u/a2~/

PW+02a) y-l )u+irha



TbL(T 1 )v/a2+JZp n.(yl )w/a2 yIp x (y- 1 Ya2
ij4,y- I )V/a2  j y- I )W/a2+T,/p -jt4y- 1 Ia*2

-j3fy- )V-/a]x/ -(- 1)wfla] -jy- 1)a (5

-J3(y-I1)v +Tlya] - 3[(y--I)w +Tla] N3Y- 1)

J1,02/a2) - (zv-'y W6/ ,(y )u/a2

(I _ 2 /a2) - ( W- Zu)/p ,(y- 1)U/a 2-t- ,/p
T -02 ~4/a2) - y U- x V)p U(Y-1 uA2 + Y/p

0(0'--03a) y- 1 )u- xa

p(02 +- a) 1 )u + ,a

(y )v/a2 ~Ay-I)W/a2+ X/p ( a2
)vf- I a2 ,l )Wia2 I ~p11a2

I )v- ya] 43i(-1 )w .a] I3y )
I~(- )+ ya] -#3[y-1 + ,a]gy )

where

x _ - 01
K1  K1  K1  KI

xa - y z - (C6)
K2K2 K2 02K2

K3 K3 K3 K3

a= P= 1C
fla r 7pa (7



Appendix D: In-Core Versus Solid State Disk Comparison

The use of the solid state disk allows for the calculations to be performed on grids

that require more computer memory than is available. The purpose of this appendix is to

evaluate the overhead associated with using the solid state disk. The code was run for 50

iterations in order to get a representative feel for differences in central processor unit (CPU)

times, input/output (1/0) requirements, and job size.

A grid was generated for a delta wing that was small enough to fit entirely in the

core of the Cray XMP-12 computer. The grid consisted of 32,000 points which is about

the maximum number of points that can be processed at one time. The grid had 20 points

in the streamwise direction, 40 points in the spanwise direction, and 40 points in the

normal direction.

The accuracy of the solution is not affected by the choice of methods. The only

difference in the operation of the code is, the solid state disk loads and unloads planes of

data as needed for calculations. This resulted in a 40 percent increase in CPU time. This

number will vary depending on the number of data planes that are processed per iteration.

The in-core run required a job size of 1,420,000 words to execute. This used

approximately 80 percent of the available core memory. The SSD run required 260,000

words of core to execute. The problem encountered when running a job that requires a

large block of core memory is that the job may sit for extended periods. The in-core job sat

for almost 30 hours, while the out-of-core job sat for about 5 minutes, and was finished in

about 30 minutes.

The last area examined was the cost of running the job. The in-core cost was $40

dollars, while the out-of-core jobcost was $375. It is believed that this cost is due to an

input/output charge. The SSD made almost 250,000 /O requests, while the in-core had

150. If this is the case, then using the SSD may become prohibitive from a financial point

of view.
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Aopendix E: Local Application

This appendix contains the job control language and parameter input files necessary

to run the ARC3D code on the Cray XMP-12 computer at Wright-Patterson AFB,Ohio.

The first file is used for compiling the code and storing it on the Cray. The second file is

the file used for submitting a job to the Cray. The code will look for three files before it

begins execution, 1) a restart file, if requested, 2) a grid file, and 3) a parameter input file.

The third file is an example of a parameter input file. Upon termination the program returns

a restart file and a parameter output file. Due to large amount of CPU time required, the

code was run in batches of 200 time iterations.

•******************** File To Compile ARC3D Code *

JOB,JN--CRANKCMP,T=50,MFL=150000. SM1TH-AF1T/ENN -54731
ACCOUNT,AC=xxxxxxx,APW=xxxxxx,US=xxxxxxx,UPW=xxxxxx.

** THIS FILE IS USED TO COMPILE THE ARC3D CODE ON THE CRAY XMP
•. A COPY OF THE COMPILED PROGRAM IS STORED ON THE CRAY.

• PURGE THE PREVIOUS COPY.

ACCESS,DN=ARC3D,ID=D880165,UQ.
DELETE,DN=ARC3D.
RELEASE,DN=ARC3D.

GET SOURCE CODE FROM THE CFS.*J
FETCH,DN=CODE,SDN=ARC3D,MF--CB,DFCB,A
TEXT='SREAD,ARC3D,ARC3D.CTASK,ALL.'.

• . COMPILE CODE AND WRITE TO BINCODE

CFT,I=CODE,B=BINCODE,ON=Z,OPT=FULLIFCON,MAXBLOCK4000,L=0.

• SAVE EXECUTABLE ON THE CRAY
,

SAVE,DN=BINCODE,PDN=ARC3D,ID=D880165.
,

* SEND BACKUP TO THE CFS

• DISPOSEDN=BINCODE,SDN=ARC3DEXE,MF=CB,DC=ST,DF=TR,ATEXT='CTASKALL.SWRITE,ARC3 DEXE,ARC3DEXE'.

/EOF
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**********~********.ARC3D3 Input File

JOB,JN--CRANK,T= 1600,MFL=500000,SSD= 11000,CL=P2. SMITIV5473 1
ACCOUNT,AC~xxxxxxxAPW=xxxxxx,US=xxxxxxx,UPW=xxxxxx.

*THIS FILE RUNS THE ARC3D3 COMPUTER CODE ON THE AS D
*CRAY XMP USING THE SOLID STATE DISK.

"SET UP FILES ON THE SSD.
A*SGNF11D=S--0RMU

ASSIGN,DN=FT1 1,DV=SSD-O-20,RDM,U.

*GET THE RESTART FILE FROM THE CFS.

FETCH,DN=RESTIN,SDN=PRESTIN,MF=CB,DF=TR,A
TEXT='SREAD,RESTIN,RESTIN.CTASK,ALL. t .

*GET THE GRID FROM THE CFS.

FETCH,DN--GRIDIN,SDN=BNGRID,MF=CB,DF=TRA
TTXTr=SREAD,BNGRID,BINGRID.CTASK,ALL.'.

*GET INPUT FILE FROM THE CYBER.

FETCH,DN=PARAIN,SDN=PARAIN,MF=CB,DF=CB,A
TEXT='GET,PARAIN.CTAS K,ALL.'.

'GET COMPILED ARC3D3 CODE FROM THE CRAY.

ACCESS,DN=$BLD,PDN=ARC3D,ID=D8801 65.
OPTION,STAT=ON.

*LOAD AND RUN.

LDR.

"SAVE THE RESTART TO THE CFS.

DISPOSE,DN=RESTOUT,SDN=RESTOUT,MF=CB,DC=ST,DF=TR,DEFER, A
TEXT='CTASK,ALL.SWRITE,RESTOUT,RESTOUT.

~SAVE THE GRID OUTPUT TO THE CFS.

:DSPOSD-GITSDNDOUPLOMFCBCST,DFTR,A

BATCH PARAMETER OUTPUT FILE TO THE WAIT QUEUE.

D ISPOSE,DN=PAROUT,SDN=PAROUT,MF--CB,DC=ST,DF--CB,DEFER,A
TEXT='CTASK,ALL.ROUTE,PAROUT,DC=WT,UJN=PAROUT,UN=D8801 65.'.



EXIT.
DISPOSE,DN=RESTOUT,SDN=RESTOUT,MF=CB,DC=ST,DF=TR,DEFER'A
TEXT='CTASK,ALL.SWRITE,RESTOUT,RESTOUT'.
DISPOSE,DN=PAROUT,SDN=PAROUT,MF--CB,DC=ST,DF=CB,DEFER.A
TEXT='CTASK,ALL.ROUTE,PAROUT,DC=WT,UJN=PAROUT,UN=D8801 65.'.
DUMPJOB.
DEBUG.

/EOF

*****~~Paramneter Input File

F INCORE(T/F)
28,65,70 JMAX,KMAX,LMAX
T T RESTART,STORE
TTF READGRID,READALL WRITGRID
50 NP
T PJLINE (ENTER NJLINE(< I 1),THEN EACH PAIR OF K,L)

NJLINE
21 25 JLINK(NJ),JLINL(NJ)
T PKLIINE (ENTER NKLINE(<1 1),THEN EACH PAIR OF J,L)
2 NKLINE
2425 KLINJ(NK),KLINL(NK)
2424
T PLL1NE (ENTER NLLINE(<l1 1),THEN EACH PAIR OF J,K)
1 NLLINE
2421 LLINJ(NL),LLINK(NL)
T F IFSCORIMETAV
T F VISCOUSTURBULNT (IF VISCOUS THEN ENTER

RE,PR,TINF)
686650, 0.72, 234.4 RE,PR,TINF
2.5,1 0.,0. FSMACH,ALP,YAW

3 ISPEC ARTIFICIAL VISCOSITY STUFF
0.50,0.75 DIS2X,DIS4X
0.50,0.75 DIS2Y,DIS4Y
0.50,0.75 DIS2Z,DIS4Z
1 1VARDT 0-CONST 1 -VARIABLE TIME STEP
F PERIODIC IN K
4 IBC(IF IBC=3 THEN ENTER JTAIL1,JTAIL2)

(THERE IS NO 4!!)
41 25 3 29 KEDGE LSURF JSTART JEND IBC=4 STUFF
1.0 CLENGTH (CHECK THIS NUMBER)
2 IORDER
I NUMDT (NUMBER OF TIMESTEP SEQUENCES TO

FOLLOW)
2.00 200 DTSEQ(I),ITERDT(I) (TIME STEP AND NUMBER OF

TIMESTEPS)
/EOF



Appendix F : Algebraic Grid Generator

This program was originally written by Dr. Phil Webster of the Air Force Flight

Dynamics Laboratory to generate a grid for a delta wing. It has since been modified by the

author to generate the grid for a cranked delta wing. A branch cut between the upper and

lower surfaces of the body allows for the use of an H grid. This approach was used to

eliminate the small radius of curvature generated at the leading edge using a C grid. Points

are clustered in high gradient areas using an exponential stretching function. There is no

provision for a wake region, therefore this code is only used to generate grids for

supersonic flows.

PROGRAM DELGRD
C
C THIS PROGRAM WAS MODIFIED TO CLUSTER POINTS AT THE WING
C LEADING EDGE BY USING ELLIPSES FOR THE UPPER AND LOWER
C BOUNDARIES OF THE DOMAIN. FRS 8 AUG 88
C
C THIS PROGRAM WAS MODIFIED TO GENERATE A GRID FOR A CRANKED
C DELTA WING CONFIGURATION. FRS 28 AUG 88
C
C PROGRAM GENERATES A GRID (HOPEFULLY) TO FIT THE DELTA WING
C MODIFIED FOR A DELTA WING WITH NO WAKE REGION
C
CDIR$ NOVECTOR

REAL LEN
COMMON X(28,65,70),Y(28,65,70),Z(28,65,70)

LOGICAL LSTOP,LCHECK,LCRANK
LCHECK = .TRUE.
LSTOP = .FALSE.
LCRANK = .TRUE.

C
C OUTPUT FILES FOR IRIS (MUST BE COMMENTED OUT)
C
C OPEN (UNIT= 10,FILE='GRID.BIN',FORM='BINARY')
C OPEN (UNIT=9,FILE='GRID.DAT)
C
C FILES FOR THE KIRTLAND AFB CRAY
C

OPEN (10,FILE='CGRID',STATUS='NEW',FORM='UNFORMATTED')
IF (LCHECK) OPEN (9,FILE='CKGRID',STATUS='NEW',

& FORM='FORMATTED')
PI = ASIN(1.0) * 2.0
LEN = 100
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ALPHA = 10.0
ALPHA = (ALPHA /180.0) *PI

OMEGA = 40.0
OMEGA = (OMEGA / 180.0) * P
DELTA = L OE-3 *LEN

XSTART = 0.05 *LEN

XEND = XSTART + LEN
XTOTAL = XEND
JSTART = 3
KMID = 4

C
C INPUT GEOMETRY FOR DELTA WING

IF(.NOT.LCRANK)THEN
SWEEP = 80.0
SWEEP = ((90.0 - SWEEP) / 180.0) *PI

BASE =LEN * TAN(S WEEP)
XMID =XSTART + 0.90 * LEN

C
NJ = 30
JMID 28

*JEND 30
NK=55
KEDGE=34
NL=-65
LSURF=21

C
* C INPUT GEOMETRY FOR CRANKED DELTA WING

C
ELSE

XCRANK=.402*LEN+XSTART
SWEEP1=80.
SWEEP1=((90.-SWEEP1)/1 80.)*PI
SWEEP2=69.
SWEEP2=((90.-SWEEP2)/1 80.)*PI
BASE I =(XCRANK-XSTART) *T AN(SWEEPI)
BASE2=(XEND-XCRANK)*TAN(SWEEP2)+BASE 1
XMIDI=(XCRANK-XSTART)*.70,XSTART
XMID2=XSTART+.70*LEN

* C
NJ=28
JMID 1=8
JCRANK= 13
JM1D2=24
JEND=28

* NK=65
KEDGE-=41
NL-=70
LSURF=25

END IF
C

* IF (LCHIECK) THEN
WRITE (9,*) -'DELTA WING LENGTH IS ',LEN



IF(.NOT.LCRANK)THEN
WRITE (9,*)' HALF THE WING ROOT CHORD IS ',BASE
THICK=BASE*TAN(OMEGA)
WRITE (9,*) * ROOT THICKNESS IS ',THICK

ELSE
WRiTE (9,*) 'HALF THE WING ROOT CHORD IS ',BASE2
THICK=BASE2*TAN(OMEGA)
WRITE (9,*) - ROOT THICKNESS IS ',THICK

END IF
ENDIF

C
DO 1 J = 1,NJ

DO K =INK
DO I L 1,NL

X(J,K,L) = 0.0
Y(J,K,L) = 0.0
Z(J,K,L) = 0.0

1 CONTINUE

C CONSTANTS FOR THE CALCULATION OF THE LIMITS OF THE DOMAIN
C

YMAX1 = 0.15 * LEN
ZMAXI = 0.15 * LENZMAX1B = -0.15 * LEN
IF(.NOT.LCRANK)THEN
YMAX2 = 0.85 * LEN
ZMAX2T = 1.05 * LEN
ZMAX2B = -0.65 * LEN

ELSE
YMAX2 = 0.95 * LEN
zMAX2T = 1.05 * LEN
ZMAX2B = -0.80 * LEN

END IF
XTOTSQ = XTOTAL * XTOTAL
XTOTCU = XTOTSQ * XTOTAL

C
C THE CONSTANT CURVE CONTROLS THE AMOUNT OF CURVATURE IN THE
C MAX AND MIN Z PLANES. CURVE MUST BE GREATER THAN OR EQUAL
C TO 0 AND LESS THAN 1. IF CURVE IS EQUAL TO 0 A RECTANGULAR
C GRID RESULTS. IF CURVE EQUALS 1 A SINGULARITY OCCURS AT
C Y=YMAX.
C

CURVE=O.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C X DIRECTION C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C DIST X POINTS ALONG THE L = LSURF AND K = I
C
C AHEAD OF BODY
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C
IF (LCHECK) WRITE (9,*)' X DIRECTION'
J=1
DO 90K= 1,NK
DO 90L= 1,NL

X(J,K,L) = 0.0
90 CONTINUE

IF (LCHECK) WRITE (9,*) J,X(J,1,LSURF)
C

NUMB = JSTART - I
DIST = XSTART
DETA = 1.0 / FLOAT(NUMB)
DX = 20.0* DELTA
CALL FINDC(DX,DIST,NUMB,C,l)
DO 100 J =2,JSTART-lI

JJ =JSTART -J
ETA =DETA * FLOAT(JJ)
FAG (EXP(C*ETA) - 1.0)!/ (EXP(C) - 1.0)
XTEMP = XSTART - FAC * DIST
DO 99 K 1,NK
DO099 L- ,NL

X(J,K,L) = XTEMP
99 CONTINUE

IF (LCHECK) THEN
Q = (XSTART - XTEMP) / DX
WRITE (9,*) J,X(J,1,LSURF),Q

ENDIF
100 CONTINUE

C
J =JSTART
DO 101 K= 1,NK
DO 101 L= 1,NL

X(J,K,L) =XSTART

101 CONTINUE
IF (LCHECK) WRITE (9,*) J,X(J,1,LSURF)

C
IF(.NOT.LCRANK)THEN

C
C FIRST SECTION OF BODY
C

NUMB = JMID - JSTART
DIST = XMID - XSTART
DETA = 1.0 /FLOAT(NUMB)
DX = 15.0 * DELTA
CALL FINDC(DX,DIST,NUMB,C,1)
DO 1 10 J = JSTART+ 1,JMID-1I

JJ = J - JSTART
ETA =DETA * FLOAT(JJ)
FAC (EXP(C*ETA) - 1.0)!/ (EXP(C) - 1.0)
XTEMP = FAC * DIST + XSTART
DO 109 k1,NK
DO 109L 1,NL

X(J,K,L) = XTEMP
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109 CONTINUE
IF (LCHECK) THEN
Q = (XTEMP - XSTART) / DX
WRITE (9,*) J,X(J,1,LSURF),Q

ENDIF
110 CONTINUE

C
J = JMID
DO 111 K= 1,NK
DO 111 L= 1,NL

X(J,K,L) = XMID
111 CONTINUE

IF (LCHECK) WRITE (9,*) J,X(J,1,LSURF)
C
C NOW FOR THE SECOND PART OF THE BODY
C

NUMB = JEND - JMID
DIST = XEND - XMID
DETA = 1.0 / FLOAT(NUMB)
DX = 5.0 * DELTA
CALL FINDC(DX,DIST,NUMB,C,1)
DO 120 J = JMID+I JEND-1

JJ = JEND - J
ETA = DETA * FLOAT(JJ)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
XTEMP = XEND - FAC * DIST
DO 119K= 1,NK
DO 119L= 1,NL

X(J,K,L) = XTEMP
119 CONTINUE

IF (LCHECK) THEN
Q = (XEND - XTEMP) / DX
WRITE (9,*) JX(J,1,LSURF),Q

ENDIF
120 CONTINUE

C
J = JEND
DO 121 K = 1,NK
DO 121 L= 1,NL

X(J,K,L) = XEND
121 CONTINUE

IF (LCHECK) WRITE (9,*) J,X(J, 1,LSURF)
C
C DO THE CRANKED WING
C

ELSE
C
C DISTRIBUTE POINTS FROM JSTART TO JMID 1
C

NUMB = JMID 1 - JSTART
DIST= XMID1 - XSTART
DETA = 1.0 / FLOAT(NUMB)
DX = 50.0 * DELTA
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CALL FINDC(DX,DIST,NUMB,C, I)
DO 125 J = JSTART+IJMIDI-1

JJ = J - JSTART
ETA =DETA * FLOAT(JJ)
FAG (EXP(C*ETA) - 1.0)!/ (EXP(C) - 1.0)
XTEMP = FAG * DIST + XSTART
DO 124 K l,NK
DO 124 L= ,NL

124 X(J,K,L) = XTEMP
IF (LCHECK) THEN
Q =(XTEMP - XSTART)I/DX
WRITE (9,*) J,X(J,1,LSURF),Q

ENDIF
125 CONTINUE

J =JMID1
DO0126 K= 1,NK
DO 126 L= 1,NL

126 X(J,K,L) = XMID I
IF (LCHECK) WRITE (9,*) J,X(J,1,LSURF)

C
C DISTRIBUTE POINTS FROM JMID 1 TO JCRANK
C

NUMB = JCRANK-JMID1I
DETA = 1.0 / FLOAT(NUMB)
DX =8.0O* DELTA
DIST = XCRANK-.5 *DX-XM1D I
CALL FINDC(DX,DIST,NUMB,C, 1)
DO 130 J =JMIDI+ 1,JCRANK- 1

JJ =JCRANK- J
ETA =DETA * FLOAT(J3)
FAG (EXP(C*ETA) - 1.0)1/ (EXP(C) - 1.0)
XTEMP = XCRANK-.5*DX-FAC*DIST
DO 129 K= I,NK
DO 129 L= 1,NL

129 X(J,K,L) = XTEMP
IF (LCHECK) THEN
Q = (XCRANK-.5*DX-XTEMP)1DX
WRITE (9,*) JX(J,1,LSURF),Q

ENDIF
130 CONTINUE

C
J =JCRANK
DO 131 K = I,NK
DO 131 L= 1,NL

X(J,K,L) =XCRANK-.5*DX

131 X(J+1,K,L) = XCRANK+.5*DX
IF (LCHECK) THEN

WRITE (9,*)J,X (J, 1,LSURF)
WRITE(9,*)J+1 ,X(J+ 1,1 ,LSURF)

END IF
C
C DISTRIBUTE POINTS FROM JCRANKi- ITO JMID2
C



NUMB =JMID2 - (JCRANK+1)
DIST =XMID2 - X(JCRANK+ 1, 1,LSURF)
DETA =1.0 / FLOAT(NUMB)
DX = 8.0 * DELTA
CALL FINDC(DX,DIST,NUMB,C, 1)
DO 135 J = JCRANK+2JM1D2-1

JJ = J - (JCRANK+1)
ETA =DETA * FLOAT(JJ)
FAC =(EXP(C*ETA) - 1.0)1/ (EXP(C) - 1.0)
XTEMP = FAC * DIST + X(JCRANK± 1, 1,LSURF)
DO 136 K l,NK

DO 136 L 1,NL
136 X(J,K,L) = XTEMP

IF (LCHECK) THEN
Q = (XTEMP - X(JCRANK+1,1,LSURF))/DX
WRITE (9,*) J,X(J,1,LSURF),Q

ENDIF
135 CONTINUE

C
J = JMID2
DO 137 K= 1,NK
DO 137 L= 1,NL

137 X(J,K,L) = XMID2
IF (LCHECK) WRITE (9,*) JX(J,1,LSURF)

C
C DISTRIBUTE POINTS FROM JMID2 TO JEND
C

DX =5.0 * DELTA
DO 140 K= 1,NK

DO 140 L= 1,NL
X(J+1,K,L) = XMID2+0.08*LEN
X(J+2,K,L) = XMID2+0. 18*LEN

140 X(J+3,K,L) = XMID2+I0.30*LEN-DX
IF(LCHECK)THEN
DO 141 J=JMID2+1,JEND-1

Q=(XEND-X(J, 1,LSURF))IDX
WRITE(9,*)J,X(J, 1,LSURF),Q

141 CONTINUE
END IF

C
J = JEND
DO 142 K = 1,NK

DO0142 L= 1,NL
142 X(J,K,L) = XEND

IF (LCHECK) WRITE(9,*)J,X(J,1,LSURF)
END IF

C
C CALCULATE THE LIMI1TS OF THE DOMAIN
C

L = LSURF
IF (LCHECK) WRITE (9,*) 'LIMTS YMAX ZMIN ZMAX'
DO 150 J= 1,NJ

XSQ = X(J,1,LSURF) * X(J,1,LSURF)
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XCU = XSQ * X(J,1,LSURF)
FACI = 3.0 * XSQ /XTOTSQ
FAC2 = 2.0 * XCU /XTOTCU
YTEMP = (YMAX2 - YMAX 1) * (FAC I - FAC2) + YMAX1I
ZTEM.PB = (ZMAX2B - ZMAX 1B) *(FAC I - FAC2) + ZMAX 1B
ZTEMPT = (ZMAX2T - ZMAX1IT) *(FAC I - FAC2) + ZMAX1IT
DO 148 L=1I,NL

Y(J,NK,L) = YTEMP
148 CONTINUE

DO 149 K = 1,NK
Z(J,K, I)=ZTEMPB
Z(J,K,NL)=ZTEMPT

149 CONTINUE
IF (LCHECK) WRITE (9,15 1) J,X(J, 1, 1),Y(J,NK, 1),

& Z(J,1,1),Z(J,1,NL)
150 CONTINUE
151 FORMAT (13,4E312.5)

CCcccCCcCCCCCCcccccccccccccccccCCCCCCccCCCCCcCCCCCCcC
C C
C Y DIRECTION C
C C
CCCcCccccCCCCCCCCcCCcccccCccccCCCCccCCCCCCCCCcc
C
C DISTRIBUTE POINTS ALONG THIE Y AXIS AT X =XEND

C
IF (LCHECK) WRITE (9,*)' Y DIRECTION'

C
IF(.NOT.LCRANK)THEN
J =JEND
L = LSURF
K=l
Y(J,K,L) =0.0
IF (LCHECK) WRITE (9,*) K,Y(J,K,L)

C
C INNER SECTION OF WING
C

YMJD =BASE *.10
NUMB = KMID-1
DIST = YMID
DETA = 1.0 /FLOAT(NUMB)
DY = 0.04 * DIST
CALL FINDC(DY,DIST,NUMB,C, 1)
DO 180 K = 2,KMID-1

KK=K- 1
ETA = DETA * FLOAT(KK)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Y(J,K,L) = FAC * DIST
IF (LCHECK) THEN
Q =Y(J,K,L) / DY
PCT = (Y(J,K,L) - Y(J,K-1,L)) / BASE
WRIT'E (9,*) K,Y(J,K,L),Q,PCT

ENDIF
180 CONTINUE
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C
K=KMID
Y(J,K,L) = YMID
IF(LCHECK) WRITE(9,*)K,Y(J,K,L)

C
C OUTER SECTION OF THE WING
C

NUMB = KEDGE - KMID
DIST = BASE -YMID
DETA = 1.0 / FLOAT(NUMB)
DY = 1.0 * DELTA / TAN(OMEGA)
CALL FINDC(DY,DIST,NUMB,C, 1)
DO 190 K = KMID+1,KEDGE-I

KK = KEDGE -K
ETA = DETA * FLOAT(KK)
FAC = (EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Y(J,K,L) = BASE - FAC * DIST
IF (LCHECK) THEN
Q = (BASE - Y(J,K,L)) / DY
PCT = (Y(J,K,L) - Y(J,K-1,L)) / BASE
WRITE (9,*) K,Y(J,K,L),Q,PCT

ENDIF
190 CONTINUE

C
K = KEDGE
Y(J,K,L) = BASE
IF (LCHECK) WRITE (9,*) K,Y(J,K,L)
IF (LSTOP) CALL EXiT

C
C BASED ON THE Y VALUES AT X = XEND DISTRIBUTE Y VALUES FROM
C X = XSTART TO XEND FOR K LESS THAN OR EQUAL TO KEDGE
C

DO 210 J = JSTART+IJEND
FAC = (X(J,1,LSURF) - XSTART) / LEN
DO 210 K = 2,KEDGE

YTEMP = Y(JEND,K,LSURF) * FAC
DO 210 L = 1,NL

Y(J,K,L) = YTEMP
210 CONTINUE

C
C FOR THE REGION BETWEEN 0 AND XSTART WITH K LESS THAN KEDGE,
SET ALL
C Y TO THE VALUE AT JSTART+I
C

JP = JSTART + 1
DO 220 J = 1JSTART

DO 220 K = 2,KEDGE
DO 220 L = 1,NL

Y(J,K,L) = Y(JP,K,LSURF)
220 CONTINUE

C
C DO THE CRANKED WING
c
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ELSE
C
C DISTRIBUTE POINTS ALONG JEND
C

J =JEND

L =LSURF

K=l
Y(J,K,L) = 0.0
IF (LCHECK) WRITE (9,*) K,Y(J,K,L)

C
C INNER SECTION OF WING
C

YMID2 =BASE2 * 0.08
NUMB =KMID-1

DIST = YMID2
DETA = 1.0 / FLOAT(NUMB)
DY = 0.10 * DIST
CALL FTNDC(DY,DIST,NUMB ,C, 1)
DO 235 K =2,KMID-I

KK=K- 1
ETA =DETA * FLOAT(KK)
FAC =(EXP(C* ETA) - 1.0) / (EXP(C) - 1.0)
Y(J,K,L) = FAC * DIST
IF (LCHECK) THEN
Q = Y(J,K,L) / DY
PCT = (Y(J,K,L) - Y(J,K- 1,L)) / BASE2

WRTE (9,*) K,Y(J,K,L),Q,PCT
ENDIF

235 CONTINUE
C

K=KMID
Y(J,K,L) = YMID2
IF(LCHECK) WRITE(9,*)K,Y(J,K,L)

C
C OUTER SECTION OF THE WING
C

NUMB = KEDGE -KMID
DIST = BASE2 - YMID2
DETA = 1.0 / FLOAT(NUMB)
DY = 1.0 * DELTA / TAN(OMEGA)
CALL FINDC(DY,DISTNUMB ,C, 1)
DO 240 K = KMID+ 1,KEDGE-1I

KK =KEDGE -K
ETA =DETA * FLOAT(KK)
FAC =(EXP(C*ETA) - 1.0)1/ (EXP(C) - 1.0)
Y(J,K,L) = BASE2 - FAC * DIST
IF (LCHECK) THEN
Q = (BASE2 - Y(JIK,L)) / DY

PT= (Y(J,K,L) - Y(J,K- 1,L)) / BASE2
WRITE (9,*) K,Y(J,K,L),Q,PCT

ENDIF
240 CONTINUE

C
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K = KEDGE
Y(J,K,L) = BASE2
IF (LCHECK) WRITE (9,*) K,Y(J,K,L)

C
C BASED ON THE Y VALUES AT X = XEND DISTRIBUTE Y VALUES FROM
C X = XSTART TO XEND FOR K LESS THAN OR EQUAL TO KEDGE
C

DO 244 J = JSTART+I1JEND
IF(J.LE.JCRANK) THEN

Y(J,KEDGE,LSURF)=(X(J,1 ,LSURF)-XSTART)*TAN(SWEEPl)
ELSE

Y(J,KEDGE,LSURF)=(XCRANK-XSTART)*TAN(SWEEP1 )+
(X(J, 1,LSURF)-XCRANK)*TAN(SWEEP2)

END IF
FAC=Y(J,KEDGE,LSURF)JY(JEND,KEDGE,LSURF)
DO 244 K =2,KEDGE

YTEMP =Y(JEND,K,LSURF) *FAC
DO0244 L= 1,NL

Y(J,K,L) = YTEMP
244 CONTINUE

C
C FOR THE REGION BETWEEN 0 AND XSTART WITH K LESS THAN KEDGE,
SET ALL
C Y TO THE VALUE AT JSTART+I
C

JP =JSTART + I
DO 246 J = 1,START

DO 246 K = 2,KEDGE
DO0246 L= l,NL

Y(J,KL) = Y(JP,K,LSURF)
246 CONTINUE

END IF
C
C SET Y FROM KEDGE TO NK
C

DO0250 J= 1,NJ
DIST = Y(J,NK,LSURF) - Y(J,KEDGE,LSURF)
DY = Y(J,KEDGE,LSURF) - Y(J,KEDGE-l,LSIJRF)
NUMB = NK - KEDGE
DETA = 1.0 /FLOAT(NUMB)
CALL FINDC(DY,DIST,NUMB,C,1I)
DO 250 K = KEDGE-,-,NK
KK =K -KEDGE
ETA =DETA * FLOAT(KK)
FAC =(EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
YTEMP = Y(JKEDGE,LSURF) + FAC * DIST
DO0250 L= 1,NL

Y(J,K,L) = YTEMP
250 CONTINUE

C
C DEFINE MAX AND MIN PLANES IN THE Z DIRECI ION
C

DO 260 J= 1,NJ
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DO 260 K=1,NK

1 Y(J,NK,1))**2)**.5)
Z(J,K,NL)=Z(J,K,NL)*(( 1.-(CURVE*Y(J,K,NL)/

1 Y(J,NK,NL))**2)**.5)
260 CONTINUE

C
cCCCCCCCCCCCCCCCCCCccccccccCCCCCCCCcCcCcccCCCCC~c

C C
C Z DIRECTION C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C CALCULATE THE Z VALUES ABOVE THE SURFACE FROM THE ORIGIN
C TO XTOTAL
C

NUMB = NL - LSURF
DETA = 1.0 /FLOAT(NUMB)
FACI = DELTA * (X(JSTART+l,1,LSURF) - XSTART) /LEN
DO 2801J= l,NJ

IF (J .LE, JSTART) THEN
DZ = FACI

ELSEIF (1 .LT. lEND) THEN
FAC = (X(J. 1,LSURF) - XSTART) /LEN
DZ = DELTA * FAC

ELSE
DZ = DELTA

ENDIF
DO 280 K=I,NK

DIST=Z(J,K,NL)
CALL FINDC(DZ,DIST,NUMB ,C, 1)
DO 280 L = LSURF4-1,NL
LL = L - LSURF
ETA =DETA * FLOAT(LL)
FAC (EXP(C*ETA) - 1.0) /(EXP(C) - 1.0)
Z(J,KL)= FAC * DIST

280 CONTINUE
IF (LCHECK) THEN

WRITE (9,*) 'Z DIRECTION'
I = END
K=l
DZ = Z(J,K,LSURF+-) - Z(JK,LSURF)
DO 285 L = LSURF,NL
Q = Z(J,K,L) / DZ
WRITE (9,*) LZ(J,K,L),Q

285 CONTINUE
ENDIF

C
C NOW FOR THE BOTITOM
C

S2 = TAN(OMEGA)
NUMB = LSURF -2
DETA = 1.0/FLOAT(NUMB)



DO 290 J =JSTART4-IlJEND

DO0290 K= INK
C
C FIRST LOCATE THE Z VALUE OF THE BOTITOM SURFACE
C

IF(K.LT.KEDGE)THEN
B2 = -S2 * Y(J,KEDGE,LSURF)
Z(J,K,LSURF-1) = Y(J,K,LSURF) * S2 + B2

ELSE
Z(J,K,LSURF-1)=Z(J,KEDGE-1 ,LSURF- 1)

END IF
C
C CALCULATE THE LOCAL DELTA
C

FAC = (X(J,1,LSURF) - XSTART) /LEN
DZ = DELTA * FAC
DIST = ABS(Z(J,K,1) - Z(J,K,LSURF-1))
CALL FINDC(DZ,DIST,NUMB ,C, 1)
DO 290 L = I ,LSURF-2
LL =LSURF -L - I
ETA =DETA * FLOAT(LL)
FAC =(EXP(C*ETA) - 1.0) / (EXP(C) - 1.0)
Z(J,K,L)=Z(J,K,LSURF- I)-FAC"'DIST

290 CONTINUE
C
C REGION BETWEEN 0 AND XSTART, Z VALUES ARE THOSE AT XSTART+1I
C

JP = JSTART + 1
Zi = Z(JP,1,LSURF+1) - Z(JP,1,LSURF)
Z2 = Z(JP,1,LSURF) - Z(JP,1,LSURF-1)
DZ =Z2 - Zi
DO 310L = 1,LSURF-1I
ZTEMP = Z(JP, 1 ,L) + DZ
DO 3 101J= 1,.JSTART

DO 31OK= 1,NK
Z(J,K,L) =ZTEMP

3 10 CONTINUE
C
C OUTPUT LOOPS
C
C ARCM LOOP
C

WRITE (10) NJ,NK,NL
DO0999 L= 1,NL

WRITE (10) ((X(J,K,L),J =1 ,NJ),K =1 ,NK),
* ((Y(J,K,L)j 1,NJ),K I 1NK),

* ((Z(J,K,L),J =1 ,NJ),K = I,NK)
999 CONTINUE

C
C WRITE OUT GRID PLANES FOR XYGRID PLOTTING
C

OPEN( 1,FILE='JPLANE',STATUS='NEW',FORM='FORMATTED')
OPEN( 12,FILE='KPLANE',STATUS='NEW',FORM='FORMATTED')
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OPEN(1I3,FILE='LPLANE',STATUS='NEW',FORM=FORMATTED')
C

J=JEND
DO 1000 K=1,NK

DO 1000 L= 1,NL
1000 WRrTE(1 1,1030)Y(J,K,L),Z(J,K,L)

K=1
DO 1010 J=1,NJ

DO 1010 L=1,NL
1010 WRITE( 12,1 030)X(J,K,L),Z(J,K,L)

L=LSURF
DO 1020 J=1,NJ

DO 1020 K=1,NK
1020 WR1TE( 13, 1030)X(J,K,L),Y (J,K,L)
1030 FORMAT(2E15.7)

C
C IRIS LOOP
C WRITE (10) NJ,NK,NL
C WRITE (10) (((X(J,K,L),J = l,NJ),K =l,NK),L =1,NL),

C & (((Y(J,K,L),J =1,NJ),K =1,NK),L =1,NL),

C & (((Z(J,K,L),J =1,NJ),K =1,NK),L =1,NL)

C
CALL EXIT

C STOP
END

C
C SUBROUTINE FINDC
C

SUBROUTINE FINDC(DELTA,DIST,ICELL,CIDIV)
C =2.00
ETA =FLOAT(IDIV / FLOAT(ICELL)
DIV=IDIV
DO 100 1 =1,20

EC = EXP(C)
ECMI = EC - 1.0
ECD = EXP(C * ETA)
ECDM1 = ECD - 1.0
BOTT7OM =ECM1I * ECD*ETA-ECM I * EC
TOP = DELTA - DIST * ECDMI IECM I
C =C +TOP/BOTTOM/DIST* ECM1 *ECMI

100 CONTINUE
RETURN
END



Bibliographv

I. Lamar J. E.,"Analysis and Design of Strake-Wing Configurations", Journal of
Aircraft. Vol 17: pp20-27, (1980).

2. Newsome R. W. and Kandil 0. A., "Vortical Flow Aerodynamics-Physical and
Numerical Simulation", AIAA Paper 87-0205, (1987).

3. Payne F. M. and Nelson R. C., "An Experimental Investigation of Vortex
Breakdown on a Delta Wing", NASA CP-2416. (1985).

4. Stanbrook A. and Squire L. C., "Possible Types of Flow at Swept Leading
Edges", Aeronautical Quarterly. Vol 15. Pt 1: pp 72-82 (Feb 1964).

5. Miller D. S. and Wood R. M., "Leeside Flow Over Delta Wings at Supersonic
Speeds", NASA TP-2430, (1985).

6. Polhamus E. C., "A Concept of the Vortex Lift of a Sharp-Edge Delta Wing Based
on a Leading-Edge Suction Analogy", NASA TN D-3767, (1966)

7. Morchoisne Y., "Modeling Unsteady Flows by the Method of Point Vortices",
ONERA TP 1986-30- (1986).

8. Xieyman Y., "Roll Up of Strake Leading/Trailing-Edge Vortex Sheets for Double -
Delta Wings", Journal of Aircraft. Vol 22: pp 87-89, (1985).

9. Fornasier L. and Rizzi A., "Comparison of Results from a Panel Method and an
Euler Code for Cranked Delta Wing", AIAA Paper 85-4091, (1985).

10. Wood R. M. And Colvell P. F., "Experimental and Theoretical Study of the
Longitudinal Aerodynamic Characteristics of Delta and Double-Delta Wings at
Mach Numbers of 1.6, 1.9, and 2.16", NASA TP-2433, (1985).

11. Hewitt B. L. and Kellaway W., "Developments in the Lifting Surface Theory
Treatment of Symmetric Planforms with a Leading Edge Crank in Subsonic Flow",
Aeronautical Research Council CP-1323. (1972).

12. Strang W. Z., Berdahl C. H., Nutley E. L., and Mum A. J., "Evaluation of Four
Panel Aerodynamic Prediction Methods", AIAA Paper 85-4092, (1985).

13. Nathman J. K., "Analysis of Leading-Edge Vortices on Complex Configurations",
AIAA Paper 85-4054, (1985).

14. Hoeijmakers H. W., Vaatstra W., and Verhaagen N. G., "Vortex Flow Over Delta
and Double-Delta Wings", Journal of Aircraft Vol 20: pp825-832, (1983). _-

15. Rizzi A. and Purcell C., "Numerical Experiment with Inviscid Vortex-Streched
Flow Around a Cranked Delta Wing: Supersonic Speed", Engineering
Cns. Vol 3: pp 230-234, (1986).

8_!



16. Rizzi A. and Purcell C., "Numerical Experiment with Inviscid Vortex-Streched
Flow Around a Cranked Delta Wing: Subsonic Speed", AIAA Paper 85-4091,
(1985).

17. Rizzi A., "On the Computation of Transonic Leading-Edge Vortices Using the
Euler Equations", Journal of Fluid Mechanics. Vol 181: pp 163-195, (1987).

18. Eriksson L. E., Smith R. W., and Wiese M. R., "Grid Generation and Inviscid
Flow Computation About Crank-Winged Airplane Geometries", AIAA Paper
87-1125, (1987).

19. Fujii K., Gavali S., and Hoist T., "Evaluation of Navier-Stokes and Euler
Solutions for Leading Edge Seperation Vortices", NASA TM-89458, (1987).

20. Kerlick G. D., Klopfer G. H., and Mion D., "A Numerical Study of Strake
Aerodynamics"; Nielson Engineering and Research TR-270, (1985).

21. Hsu C. H. and Hartwick P. M., "Computation of Vortical Interaction for a Sharp
Edged Double Delta Wing", AIAA Paper 87-0206, (1987).

22. Hsu C. H., "Navier-Stokes Computation of Flow Around a Round-Edged Double-
Delta Wing", AIAA Paper 88-2560, (1988).

23. Hsu C. H. and Hartwick P. M., "Incompressible Navier-Stokes Computations of
Vortical Flows Over Double-Delta Wings", AIAA Paper 87-1341, (1987).

24 Fujii K. and Schiff L., "Numerical Simulation of Vortical Flows Over a Straked
Wing", AIAA Paper 87-1229, (1987).

25. Fujii K. and Kutler P., "Numerical Simulation of the Leading-Edge Seperation
Vortex for a Wing and Strake Wing Configuration", AIAA Paper 83-1908, (1983).

26. Ganzer U. and Szodruch J., "Vortex Formation over Delta, Double Delta, and
Wave Rider Configurations at Supersonic Speeds", AGARD CP-428, (1987).

27. Ausherman D. W., "Surface Pressure Measurements on a Double Delta
Wing/Body Configuration at Mach 2 and Mach 3", NSWCIMP/86-240, (1986).

28. Sevier J. R., "Aerodynamic Characteristics at Mach Numbers of 1.41 and 2.01 of
a Series of Cranked Wings Ranging in Aspect Ratio From 4.00 to 1.74 in
Combination With a Body", NASA

29. Nathman J. K., Norton D. J., and Rao B. M., "An Experimental Investigation of
Incompressible Flow Over Delta and Double-Delta Wings", ONR CR 215-231-3,
(1976).

30. Brennenstuhl U. and Hummel D., "Vortex Formation Over Double-Delta Wings",
ICAS Paper 82-6.6.3. (1982).

31. Henke R., "Wind Tunnel Tests of Delta Wings", College of Aeronautics Memo
2 Cranfield Institute of Technology, (1982).

85--



32. Pulliam T. H., "Efficient Solution Methods for the Navier-Stokes Equations",
Lecture Notes for the Von Karmen Institute for Fluid Dynamics Lecture Series:
Numerical Techniques for Viscous Flow Computation in Turbomachinery
Bladings, Brussels, Belgium, January 1986.

33. Rizzetta D. P. and Shang J. S. "Numerical Simulation of Leading-Edge Vortex
Flows", AIAA Paper 84-1544, (1984).

34. Buter T. A. and Rizzeta D. P. "Steady Supersonic Navier-Stokes Solutions of a
750 Delta Wing", NASA CP-2416, (1985).

35. Monnerie, B. and Werle H., "Study of Supersonic and Hypersonic Flow About a
Slender Wing at an Angle of Attack", AGARD CP-30, (1968). (in French)

36. Thomas J. L and Newsome R. W., "Navier-Stokes Computations of Leeside
Flows Over Delta Wings", AIAA Paper 86-1049, (1986).

37. Vigneron Y. C., Rakich J. V. and Tannehill J. C. "Calculation of Supersonic
Viscous Flow over Delta Wings with Sharp Subsonic Leading Edges", AIAA
Paper 78-1137, (1978).

38. Pulliam T. H. and Steger J. L., "Implicit Finite-Difference Simulations of Three
Dimensional Compressible Flow", AIAA Journal. Vol 18: pp1 59-167, (1980).

39. Anderson D. A., Tannehill J. C. and Pletcher R. H.. Computational Fluid
Dynamics and Heat Transfer. New York: Hemisphere Publishing Corporation,
1984.

40. Warming R. F. and Beam R. M., "On the Construction and Application of Implicit
Factored Schemes for Conservation Laws", SIAM-AMS Proceedings. Vol I I: pp
85-129, (1978).

41 Lindemuth I. and Killeen J., "Alternating Direction Implicit Techniques for Two
Dimensional Magnetohydrodynamics Calculations", Journal of Computational
Physics, Vol 13: ppl8l-208, (1973).

42. McDonald H. and Briley W., "Three Dimensional Supersonic Flow of a Viscous
or Inviscid Gas", Journal of Computational Physics. Vol 19: pp 150-178, (1975).

43. Steger J. L., "Implicit Finite-Difference Simulation of Flow About Arbitrary
Geometries with Application to Airfoils", AIAA Paper 77-665, (1977).

44. Warming R., Beam R., and Hyett B., "Diagonalization and simultaneous
Symmetrization of the Gas-Dynamic Matrices", Mathematics of Computation. Vol
22: pp 1037-1045, (1975).

45. Pulliam T. H. and Chaussee D. S., "A Diagonal Form of an Implicit Approximate
Factorization Algorithm", Journal of Computational Physics. Vol 39: pp347-363,
(1981).

46. Jameson A., Schmidt W., and Turkel E.,"Numerical Solutions of the Euler
Equations by Finite Volume Methods Using Runge-Kutta Time Stepping", AIAA
Paer 81-1259, (1981).

86



47. Pulliam T. H., "Artificial Dissipation Models for the Euler Equations", AIAA
Paper 85-0438. (1985).

48. Vinokur M., "Conservation Equations of Gas-Dynamics in Curvilinear Coordinate
Systems", Journal of Computational Physics. Vol 14: pp105-125, (1974).

87



Vita

Captain Francis R. Smith was born

le graduated from Ocean City High School in Ocean City, New Jersey in 1976. He

enlisted in the United States Air Force and served as a Jet Enginq Mechanic until August

1978. He attended Syracuse University under the Airman Scholarship and Commissioning

Program and received his Bachelor of Science Degree in Aerospace Engineering. Upon

gaduation he received his commission through the Reserve Officers Training Corps and

was assigned to the Air Force Wright Aeronautical Laboratories at Wright-Patterson AFB.

Ohio. He then served as a project engineer on the Mission Adaptive Wing Program. In

May .198, :e entered the School of Engineering, Air Force Institute of Technology.

88



SECUJRITY CLASSIFICATION OF THIS PAGE1
Form Ap proVed

REPORT OCUMENTATION PAGE o .o704e-1

F. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORTab IIpproved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for pnlic.lae

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AIT/GAEAA/88D-34

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (if appikable)
School of Enginieering jAFIT/ENY

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State. and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

01a. NAME OF FUNDINGiSPONSORING 8Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONj (If applkable)

SL ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

ELEMENT NO. INO. NME (WCESSION NO.

11. TITLE (Include Security Clas~fication)

See Box 19

12. PERSONAL AUTHOR(S) SMitth, Francis R., B.S., Captain USAF

PIgP%&.§ORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, )1. PAGE COUNT
FROM TO7__1988 Deer 97

16. SUPPLEMENTARY NOTATION

17. COSATI CODES Run irny and "dentify by block number)
FIELD GROUP SUB-GROUP I IU'rIca% yss opOpe9 1Ae~rodynamics

I 04 fCautational Fluid Dynics, Aircraft Performance

19. ABSTRACT (Continue on revene if necesuay and identify by block number)

Title: THIN-IAYER NAVIER-STOKES SOITICS FOR A CRANKED DELTA WIn

Thesis Chairman: Aboad Halirn
Associate Professor of Aerospace Engineering

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED'UNLIMITED IN SAME AS RPT. C3 DTIC USERS Ui! ASSIFIEI

22& NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (nclude Area Code) 22c. OFFICE SYMBOL
Afmad Halim 513-255-2040 Iz"/q

DO Fom 1473. JUN 86 Previous editions are obobte. SECURITY CLASSIFICATION OF THIS PAGE



Block 19

For thin, highly swept wings operating at moderate to high angles of attack, the

flow over the wing is dominated by the formation of leading edge vortices. These vortices Q'

produce a minimum pressure and this results in an additional lift increment. This lift in-

crement is nonlinear with angle of attack and cannot be accurately predicted using present

design methods.

The thin-layer Navier-Stokes equations were used to calculate the flow over a

straight delta wing and a cranked delta wing. The straight delta wing was used as the test

case due to the availability of both experimental and numerical data. Results are compared

with this dam in order to validate the numerical procedure. The computer code uses an im-

plicit, time marching algorithm developed by Beam and Warming. The solution is marched

in time until a steady state is achieved. The code is approximately factored and diagoal-

ized in order to reduce computational work. A solid state disk is used in order to allow for

the large grid needed for a three dimensional solution.

The thin-layer Navier-Stokes equations are capable of accurately calculating vortical

flows. The cranked delta wing exhibited flow similar to a straight delta wing upstream of

the crank. The vortex generated at the crank quickly became paired with the vortex from

the front of the wing. The vortex location aft of the crank changes with streamwise loca-

tion. The grid resolution is important when trying to calculate vortical flows, due to the

large gradients in both the spanwise and normal directions. The solid state disk can be

used to run problems that require more computer memory than is available. Optimization -'

of the program input/output should be done for running the code with the solid state disk in

order to reduce the central processor unit time and job cost.


